Optically active transition metal complexes 110^{\prime} New rhodium (I) complexes with 2-pyridinecarboxamido ligands

Henri Brunner ${ }^{\text {a,* }}$, Bernhard Nuber ${ }^{\text {b }}$, Markus Prommesberger ${ }^{\text {a }}$
" Institut fïr Anorganische Chemic, Universitüt Repenshurg. Universitünsstrasse 31. 93040 Regensiburg. Germany
${ }^{\text {b }}$ Anorganisch-Chemisches Institut der Universitüt Heidelherg, Im Newheinner Feld 270, 69120 Ileidetherg. Gernany

Received 12 February 1996

Abstract

The reaction of $[\mathrm{Rh}(\operatorname{cod}) \mathrm{CI}]_{2}$ with the 2 -pyridinecarboxamides $1 \mathrm{a}-\mathrm{e}$ in the presence of base affords the new complexes 2 a -e in which the amides act as bidentate ligands coordinating via pyridine- N and the deprotonated amide -N . The structure of 2 a was established by X-ray structure analysis: $C_{1.1} H_{17} N_{2} O R h$, triclinic, space group $P \overline{1}(N o .2)$, a $=10.034(4) \AA, b \approx 10.146(6) \AA . c=13.165(4) \AA$, $\alpha=108.00(3)^{\circ}, \beta=91.93(3)^{\circ}, \gamma=89.90(4)^{\circ}, Z=2 \times 2, R=0.039, R_{w}=0.036$.

Kcywords: Rhodium: Amide; Optically active transition metal complexes; 2-Pyridinecarboxamide ligands; X-ray structure amalysis; (S)-1-Pheny:ethyl substitution

1. Introduction

Chiral nitrogen ligands continue to play in important role in enantioselective catalysis [2-4]. In particular, the oxazoline ligands. introduced into enamtioselective catalysis with transition metal complexes in 1986 [5]. proved to be a successful class of compounds. The oxazoline system contains a special form of a carboxamide, namely its iminoester. Surprisingly, up to now carboxamides themselves have not played a major role as ligands in enantioselective catalysis, either in their neutral form or as anions after deprotonation at the amide nitrogen. The present paper deals with 2 -pyridinecarboxamides. Although a number of complexes with these ligands has been reported [6-9], there are only few publications that focus on their catalytic application [10,11]. This study describes the preparation and characterization of some (η^{4}-1.5-cyclooctadiene)(2pyridinecarboxamido)rhodium(I) complexes [12], including an X-ray analysis of the crystal structure of the parent compound.

[^0]
2. Synthesis and spectra of complexes 2a-e

The ligands la-e were synthesized by means of common methods for the preparation of carboxamides: In and le by reaction of 2 pyridinecarboxylic acid chloride with ammonia and (S) 1 -phenylethylamine respectively, 1b by the reaction of 2 -pyridinecarboxylic acid with methylamine and le and id by the mixed anhydride method.
$[\mathrm{Rh}(\operatorname{cod}) \mathrm{Cl}]_{2}$ reacts with 2 -pyridinecarboxamide 1 a and its N-substituted derivatives lb-e in alkaline $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}(\mathrm{NaOH}$ for $\mathbf{l a}-\mathrm{d}$ and KOH for le) to give the neutral, square-planar thodium(I) complexes 2a-c (Scheme 1). After removal of an amide proton, the 2 -pyridinecarboxamides act as anionic, bidentate N, N^{\prime}-ligands. The remaining two coordination sites are occupied by 1,5 -cyclooctadiene.

The IR spectra of the free ligands exhibit the characteristic bands of amides and the pyridyl moiety [13]. For the primary amide 1a, the amide I band appears at about $1670 \mathrm{~cm}^{-1}$ and amide Il at 1690 (sh). The secondary amides $\mathbf{1 b}-\mathbf{e}$ show amide 1 at almost the same frequency; amide II is found at about $1530 \mathrm{~cm}^{-1}$.

In contrast to complex 2a, the IR spectra of $\mathbf{2 b - a}$ do not show $\nu(\mathrm{N}-\mathrm{H})$ bands at $3290-3400 \mathrm{~cm}^{-1}$, indicating the deprotonation of the amide ligands. Owing to the

Scheme 1.
presence of the 1,5 -cyelooctadiene ligand there are a number of peaks of low intensity in the range of $2800-3000 \mathrm{~cm}^{-1}$ in all the complexes. The amide I band is shifted to lower frequencies as expected for amide-N coordination. The amide II and III bands are replaced by a medium absorption at about 1340-1380 cm^{-1}. typical for deprotonated amide complexes coordinating via amide- N [9].

The ${ }^{7}$ H NMR spectrum of la exhibits two signals for the amide protons at $\delta 6.63$ and 7.92 ppm . In the spectra of the other ligands lb-e only one peak is found due to mono substitution of the nitrogen atom. The four pyridine protons result in four multiplets in the range δ 7.3 to 8.6 ppm . They appear in the sequence H^{6} (ddd). $H^{3}(d t), H^{4}(t d), H^{3}$ (ddd), when going from tower to higher field. The coupling constants are in the normal range ($J_{45}=7.8 \mathrm{~Hz}_{2} J_{45} \approx 1.1 \mathrm{~Hz}: J_{36} \approx 1.1 \mathrm{~Hz}_{2} J_{45} \approx$ $7.6 \mathrm{~Hz}: J_{50}=1.7 \mathrm{~Hz}: J_{30} \approx 4.6 \mathrm{~Hz}$).

In the complexes $2 \mathrm{a}=\mathrm{e}$ the 'H NMR signals of the pyridine protons show only small chemical shift differs ences compared with the free ligands, except $\mathrm{H}^{\prime \prime}$ which appears about 1 ppm shifted to higher fietd. Generally. upon complexation these signals occur at lower field [14], e.g., in rhodium(III) complexes [9,15]. The high field shift in 2 anee indicutes a high electron density in these low vilent complexes.

In the spectrum of 2a there is one signal for the remaining amide proton. In the other spectra no amide proton resonances are found, again evidence for deprotonation.

The 1.5-cyclooctadiene ligand shows two signals for the olefinic protons at about $\delta 4.3$ and 4.0 ppm and two for the methylene protons at about $\delta 2.5$ and 1.9 ppm . Owing to the (S) 1 -phenylethyl group in complex 2 e . the olefinic signal at lower field is split into two broad signals, because the olefinic protons are diastereotopic. The fact that 1.5 -cyclooctadiene appears as four signals in the 'H NMR specta proves that it does not rearrange at room temperature. For complex $\mathbf{2 b}$ there is almost no difference between the spectra lecorded at room temperature and $170^{\circ} \mathrm{C}$. In the literature there are examples for both rearranging [16] and for non-1tarranging 1.5cyelooctadiene complexes [17].

Table 1
Summary of crystal data, data collection and structure refinement ${ }^{\text {a }}$ for complex 2a

Crysul purameters	
Elemental formula	$\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{ORh}$
M	332.24
Crystal system	triclinic
Space group (no.)	Pİ
$u(\mathbb{A})$	10.034(4)
$b(\hat{A})$	10.146(6)
c (A)	13.165(4)
a (deg)	10x.09(3)
β (deg)	91.93(3)
$\gamma(d \mathrm{lg})$	89,90(4)
$v\left(A^{\prime}\right)$	1273.2
4	2×2
13(9 cm ')	1.71
$f(0 \mathrm{MO})$	0.12
μ (minn ')	1.11
Crystal coldr, mape	ditk trd, irregular
Crystal wize (mm')	$0.15 \times 0.35 \times 0.40$
Dated collecolion	
hl $/$ ranges	0-13, - 13-13-17-17
20 range (deg)	$30-54.1$
Total no. of unique reflections	\$606
No. of observed reflections ($1>2.5 r_{1}$)	4350
Min, max. transmission factors	0.73.1.00
Datar refincoment	
No. of fellections, 20 range (deg) for empirical absompton corrccion	7, 9,0-42.0
No. of LS purameters	326
Largest shintes.s. in final circle	0.03
$J_{p_{\text {nuw }}} J_{p_{\text {onn }}} \text { (e } A{ }^{1} \text {) }$	$-0.6:, 0.47$
$R^{\prime \prime}$	0.039
$R_{*}{ }^{\prime \prime}$	0,0,36

[^1]
3. X-ray structure analysis of $\mathbf{2 a}$

A single crystal X-ray structure analysis was carried out for the parent complex 2a. (Further details of this structure determination have been deposited with the number CSD-404812 at the Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen 2, Germany.)

Relevant crystaliographic data are given in Table 1 , atomic coordinates are reported in Table 2 and selected bond distances and angles are listed in Table 3. A view of the structure with the atomic numbering is shown in Fig. 1.

There are four molecules in two almost identical forms in the unit cell (the values for the second molecule are given in parentheses). The 2-pyridinecarboxamide anion is a strictly planar, bidentate ligand. A least

Table 2
Atomic coordimates of 2a

Atom	.	y	:
Rhl	0.1911	0.4493	0.1282
NI	0.3501	0.516 .5	0.0692
N2	0.1981	0.6600	0.220 .3
O1	0.4706	0.7108	0.0713
Cl	$\bigcirc 0.019$	(0.4097	0.1509
C2	0.06 .16	0.36 .36	0.2.0.3
C:	0.0940	0.2125	0.20 .38
(1)	(0.2180	0.16 .44	0. 1444
CS	0, 3508	0.2 .117	0.0674
18	0.16 .7	0.2097	=00.006\%
(7)	0.0107	0.2211	$=0.03 .24$
C's	$\cdots 0.074 .4$	0.3234	0.0) 16.5
(9)	$0.3 \mathrm{NO})^{2}$	0.0402	(0.1087
C10	0.2919	0.7.326	(0.1894
Cll	(0.33) ${ }^{3}$ (0)	(0.87,3,3	0.2.151
C12	0.2288	0.9420	0.3140
Cl3	(0.1287	0.809 .4	0.3482
Cld	0.1189	0.7283	0.3000
Rh2	0.7068	0.5285	0.3812
N3	0.8394	0.4256	$0.446)$
N4	0.6914	0.3274	$0.2 / 22$
02	0.9169	0.2076	0.4365
C21	0.6232	0.6 .330	0.2784
C22	0.5226	0.60 .13	0.3382
C23	0.4614	0.7094	(0.4.113
C24	0.5321	0.7203	0.5.97)
C25	0.6766	0.6842	0.528 .3
(26	0.768 .1	0.7146	0.4716
C27	0.7359	0.8.378	0.4141
C28	0.6003	0.7724	0.3002
(2)	0.8494	0.2901	0.40)47
C30	0.76 .31	0.2349	(0, 3048
C31	0.7566	(0.0949	0.2488
C. 32	0.6760	0.049 K	0.1584
C33	0.6062	0.1453	0.1244
C34	0.6163	0.2834	0.1823

Table 3
Bond lengths and angles of 2a a

Rhl-NI	$2.007(4)$	Rh2-N3	$2.021(5)$
Rh1-N2	2.1054 (4)	Rh2-N4	$2.101(4)$
Rhl-Cl	$2.126(5)$	Rh2-C21	$2.115(6)$
Rhi-C2	$2.15006)$	Rh2-C22	$2.127(5)$
Rh1-C5	2.102 (5)	Rh2-C25	$2.116(5)$
Rhi-C6	$2.125(4)$	Rh2-C26	2.141 (5)
Cl -C2	$1.359(8)$	C21-C22	1.387(8)
C2-C3	$1.512(8)$	C22-C23	$1.501(7)$
C3-C4	$1.492(8)$	C23-C24	$1.512(8)$
C4-C5	1.506(9)	C24-C25	1.495(7)
C5-C6	$1.389(7)$	C25-C26	1.397(8)
C6-C7	$1.505(7)$	C26-C27	1.499(9)
C7-C8	$1.504(7)$	C27-C28	1.495(7)
$\mathrm{Nl}-\mathrm{C9}$	$1.312(6)$	N3-C29	1.318(7)
$\mathrm{Cy}-\mathrm{Ol}$	$1.254(6)$	C29-02	1.2347)
C9-C10	$1.506(6)$	C29-C30	$1.507(6)$
C10-ClI	$1.373(7)$	C30-C31	$1.383(7)$
C11-C12	1.379(7)	C31-C32	$1.370(7)$
C12-C13	1.364(9)	C32-C33	1.370(8)
C13-C14	$1.376(7)$	C33-C34	$1.373(7)$
N2-C14	$1.348(6)$	N4-C34	$1.335(6)$
N2-C10	$1.345(6)$	N4-C30	$1.345(7)$
$\mathrm{N} 1-\mathrm{RlI} 1-\mathrm{N} 2$	78.7(1)	N3-Rh2-N4	78.7(2)
$\mathrm{NI}-\mathrm{RhI}-\mathrm{Cl}$	159.2(2)	N3-Rh2-C21	100.4(2)
NI -Rhl-C2	163.7(2)	N3-Rh2-C22	160.7(2)
NI -Rhl--C5	91.9(2)	N3-Rh2-C25	93.3(2)
Ni -Rhl-C6	94,0K2)	N3-R12-C26	$97.7(2)$
$\mathrm{N} 2 \times \mathrm{RhI}-\mathrm{Cl}$	97.9(2)	N4-Rh2-C21	$96.7(2)$
N2-Rhi-C2	101.6(2)	N4-R12-C22	97.4(2)
N2-RH1-C5	158.9(2)	$\mathrm{N} 4-\mathrm{RH2} 2-\mathrm{C} 25$	155.0(2)
N2-Rh1-C6	159.5(2)	N4-R12-C26	165.42)
Cl-Rhl-C2	37.1(2)	C21-Rh2-C22	38.2(2)
$\mathrm{Cl}-\mathrm{Rhl-C5}$	97.42)	C21-Ris-C25	98.082)
Cl-Rhl-Co	82.2(2)	C21-R12-C30	$81.9(2)$
C2-Rhl-cs	$82.112)$	C2J Rha cos	$83.3(9)$
C2 Rhic	$90.812)$	C22-k12 C26	$90.5(2)$
CS-Rh-C6	38.4(2)	C25 R12 C20	36.30)
CK.Cl ${ }^{\text {C\% }}$	126.45)	(2A) C21-c2	$1249(4)$
Cl Coca	123.9(4)	C21 C2-C23	124.65)
$\mathrm{C} 2 \mathrm{C3}=\mathrm{C4}$	113.605	C22 C23-C24	$113.0 \times 5)$
C3-C4-Cs	113.94)	C23-C24-C25	114.2(4)
$\mathrm{C4} \mathrm{CS}_{5} \mathrm{Co}$	120.059	C24-85-C20	$135.3(5)$
CS CO-C7	123.04.5	C25-120-C24	124.3(5)
C6-C7. C	113.2(4)	C20-C27-C28	113.4(4)
C7-C8-Cl	114.04)	C27-(28-C21	114.23)
Rlı- Nl - $\mathrm{Cl}^{\text {9 }}$	119.0.3)	Rh2-N3-C29	119.3(3)
$\mathrm{N} 1-\mathrm{Cy}-\mathrm{Ol}$	128.0(4)	N3-C39-02	129.4(4)
N1-C9.-C10	113.3(4)	N3 C29 C30	$111.9(5)$
CO-C10-N2	115.7(4)	C29-(30-N4	117.2(4)
Rl1- 2 2-C10	113.003)	Rh2-N4-C30	112.4(3)
N 2 (10-Cl1	$122.0(4)$	N4 C30-C31	121.1(4)
C10. C11 C12	118.8(5)	(3) C31-C32	119.4(5)
C11-Cl2 Cl3	$119.9(5)$	C31-c32 c3.	119.065)
C12-Cl3-C14	118.7(5)	C.32-C33-C34	$119.6(5)$
C13-C14 N2	122.2(5)	C.33-C34-N4	121.7(5)

"Estmated standard deviations are shown in parentheses.
squares plane consisting of all non hydrogen atoms of ${ }^{1}$ the ligand ($\mathrm{N} 1, \mathrm{~N} 2, \mathrm{O} 1, \mathrm{C})-\mathrm{Cl} 4$) was calculated; no atom deviated more then $0.019 \AA(01)(0.020 \AA(\mathrm{C} 34))$

Fig. I. orter diagram of 2 a showing the labeling scheme used. Ellipsoids are drawn at the 40% probability level: hydrogen atoms have been omitted for clarity
from that plane. The bond lengths are almost the same as in the free ligand [18], the largest difference is 0.025 $\AA(0.036 \AA)$ for $\mathrm{Cl} 1-\mathrm{Cl} 2(\mathrm{C} 31-\mathrm{C} 32)$. In other transition metal complexes containing deprotonated 2 -pyridinecarboxamide as a ligand, there are significant differences in the bond lengths between free and coordinated amide (19,20].

The rhodium-amide- N bond is markedly shorter than the thodium - pyridine $-N$ bond ($2.007 \AA(2.021 \AA$) and $2.105 \AA(2.101 \AA)$ respectively). This is also observed in other complexes containing 2-pyridinecarboxamides in their deprotonated form [15]. The distances between rhodium and the double bond centers are 1.997 and $2.022 \AA(2.005$ und $2.010 \AA$), to the short end of the pange found in heavymetal complexes with 1.5 cyclooctadiene [21].

The coordination geometry about the rhodium atom is planar. A least squares plane, consisting of RhI, NI, N2. M1 and M2, where M1 and M2 are the midpoints of $\mathrm{C} 1-\mathrm{C} 2$ and $\mathrm{C} 5-\mathrm{C} 6$ respectively, was calculated and the atoms showed deviations of $0.010-0.020 \AA(0,029 \ldots$ 0.049 \&) from that plane. The $\mathrm{NI} 1-\mathrm{Rh} 1-\mathrm{N} 2$ angle of $78.7(1)^{\circ}\left(78.7(2)^{\circ}\right)$ departs markedly from square-plamar geometry, A similar angle (78.9°) was found in (η^{4} 1.5 -cyclooctadiene)(2 -pyrrolcurbald- (S) - 1 -phenylethyliminato)rhodium(I) [22]. The M1-Rh1-M2 angle of $88,0^{4}$ agrees well with the conesponding angles in other Rh(cod) complexes [23-25].

The 1.5 -cyclooctadiene ligand adopts its customary 'tub' conformation. The double bonds, $\mathrm{Cl}-\mathrm{C} 2$ and C5-C6. have lengths of $1.359(8) \AA(1.387(8) \AA)$ and $1.389(7) \AA(1.397(8) \AA)$ respectively, compared with the distance of $1.34 \AA$ of an uncoordinated olefin [26]. A least squares plane was calculated for the four olefinic carbons, showing deviations of $0.052-0.053 \AA$ ($0.057-$
$0.058 \AA$) for these atoms. The angle between this plane and the coordination plane is $89.18^{\circ}\left(92.20^{\circ}\right)$. Carboncarbon single bond distances range from $1.492(8)$ to $1.512(8) \AA(1.495(7)$ to $1.512(8) \AA)$, typical for $1.5-$ cyclooctadiene bonded to a heavy metal [26].

4. Experimental part

All reactions were carried out under an atmosphere of nitrogen. All solvents were dried and distilled before use, according to standard procedures. ${ }^{1} \mathrm{H}$ and ${ }^{3} \mathrm{C}$ NMR spectra were recorded on a Bruker AC 250 and a Bruker ARX 400 spectrometer with TMS as internal reference. Infrared spectra were recorded on a Perkin-Elner Paragon 1000 PC FT-IR and a Beckman Acculab 3 spectrometer. Mass spectra were determined on a Finnigan MAT 95 (FD) and on a Finnigan MAT 112 S (EI) mass spectrometer. Optical rotations were measured with a Perkin-Elmer 241 polarimeter. C,H,N analyses were performed by the microanalytical laboratory of the University of Regensburg.

4.1. Synthesis of the ligands

4.1.1. 2-Pyridinecarboxamide Ia

2.Pyridinecarboxylic acid ($5 \mathrm{~g}, 40 \mathrm{mmol}$) was suspended in $50 \mathrm{ml}(690 \mathrm{mmol})$ of freshly distilled thionyl chloride and the resulting mixture wats stirred for 40 h at ambient temperature. During this time the green suspension turned to a red solution. The solution was poured into 150 ml of pentane and stirred for 30 min . Then the solvent was poured off and the residue was dried. the pink powder (2.8 g) was suspended in concentrated aqueous ammonia and the mixture was stirred for about I h. The solution was extrated three times with chloroform, then the solvent was evaporated. The residue was recrystallized from ethanol to give la as white crystals. Yield: $1.3 \mathrm{~g}(27 \%), \mathrm{m} . \mathrm{p} .105-106^{\circ} \mathrm{C}$ (Ref. [27]: 106.3$106.8^{\circ} \mathrm{C}$. $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3419 \mathrm{~m}, 3174 \mathrm{br}(\mathrm{N}-\mathrm{HI})$, 1664s ($\mathrm{C}=\mathrm{O}$, amide D), 1604sh (amide II). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 8.57-8.60\left(\mathrm{~m}, \mathrm{IH}, \mathrm{py} \cdot \mathrm{H}^{6}\right) .8 .20-8.24$ (m, 1H, py-H $), 7.92$ (broad, $1 \mathrm{H}, \mathrm{NH}), ~ 7.83-7.89(\mathrm{~m}, 1 \mathrm{H}$, py- $-\mathrm{H}^{\mathrm{s}}$), 7.42 m .48 (m, IH, py- H^{s}), 6.63 (broad. IH , NH). Anal. Found: C. 58.96; H, 4.95; N, 22.79. $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}$ (122.14). Calc: C, 59.00: H. 4.96: N . 22.94r, MS (El): $122 \mathrm{~m} / \mathrm{c}\left(\mathrm{M}^{+}\right)$.

4.1.2. N-Merhylpyridine-2-carboxamide ib

A mixture of 2.7 ml (20 mmol) of ethyl 2 -pyridinecarboxylate and $2.6 \mathrm{ml}(30 \mathrm{mmol})$ of 40% aqueous methylamine was refluxed for 18 h . The excess of methylamine was evaporated at reduced pressure. The resulting red liquid was distilled at 0.05 Torr/b.p. $41-43^{\circ} \mathrm{C}$ yielding $1.8 \mathrm{~g}(68 \%)$ of a colorless liquid. IR
(film, cm^{-1}): $3392 b r(\mathrm{~N}-\mathrm{H}), 1675 / 1660 \mathrm{~s}$ (amide I), 1530s (amide II), 1280 (amide III), H NMR (CDCl_{3}): $\delta 8.52-8.55\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{py}-\mathrm{H}^{6}\right), 8.18-8.22\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{py}-\mathrm{H}^{3}\right)$, 8.08 (br, 1H, NH), 7.80-7.87 (m. 1H, py-H ${ }^{4}$), 7.39-7.44 $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{py}-\mathrm{H}^{5}\right), 3.04\left(\mathrm{~d}, \mathrm{~J}\left(\mathrm{CH}_{3}-\mathrm{NH}\right)=5.1 \mathrm{~Hz}, 3 \mathrm{H}\right.$, CH_{3}). Anal. Found: C, 61.20: H, 5.99: N, 20.60. $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}$ (136.17). Calc.: C, 61.74; H, 5.93; N, 20.58%. MS (EI): $136 \mathrm{~m} / \mathrm{e}\left(\mathrm{M}^{+\cdot}\right)$.

4.1.3. N -(2-Propyl)-2-pyridinecarboxamide Ic

2-Pyridinecarboxylic acid ($\mathbf{3 . 1 \mathrm { g } , 2 5 \mathrm { mmol } \text {) was dis- }}$ solved in THF (100 ml) and cooled to $-15^{\circ} \mathrm{C}$. Triethylamine was added ($3.5 \mathrm{ml}, 25 \mathrm{mmol}$), followed by ethyl chloroformate ($2.4 \mathrm{ml}, 25 \mathrm{mmol}$). The suspension was stirred for 30 min , then 2 -aminopropane ($2.2 \mathrm{ml}, 25$ mmol) was added and stirring was continued for 1 h . The hydrochloride was filtered off and washed with THF. The filtrate was combined with the washing liquids and evaporated. The residue was dissolved in boiling petroleum ether $50-70$ and crystallized at $-30^{\circ} \mathrm{C}$ to give the product 1 c as a white crystalline mass. Yield: $2.1 \mathrm{~g}(52 \%)$, m.p. $35^{\circ} \mathrm{C}$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3382 w ($\mathrm{N}-\mathrm{H}$), 1669s (amide I), 1524s (amide II). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 8.53-8.56\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{py}-\mathrm{H}^{6}\right), 8.18-8.22$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{py}-\mathrm{H}^{3}$), $7.81-7.87\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{py}-\mathrm{H}^{4}, \mathrm{NH}\right), 7.38-$ $7.44\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{py}-\mathrm{H}^{\mathrm{s}}\right), 4.22-4.35(\mathrm{~m} ; 1 \mathrm{H}, \mathrm{CH}), 1.29(\mathrm{~d}$, $\left.J\left(\mathrm{CH}-\mathrm{CH}_{3}\right)=6.6 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$. Anal. Found: C. 65.47: H. 7.38; $\mathrm{N}, 16.84 . \mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$ (164.23). Calc.: C. 65.82; II. 7.38; N, 17.06\%. MS (EI): $164 \mathrm{~m} / \mathrm{e}$ $\left(\mathrm{M}^{+}\right)$.

4.1.4. N-Phenyl-2-prridincturbosamide Id

Id was prepared similarly to lc . The amine component was freshly distilled aniline (2.3 ml .25 mmol). After evaporating the solvent the residue was dissolved in methanol and water was added until crystallization was complete. Recrystallization from petroleum elher 50-70 afforded the anilide id as white needles. Yield: $4.0 \mathrm{~g}(80 \%)$, m.p. $75^{\circ} \mathrm{C}$ (Ref. [28]: $76^{\circ} \mathrm{C}$). IR (KBr , cm^{-1}): $3336 \mathrm{~m}(\mathrm{~N}-\mathrm{H}), 1671 \mathrm{~s}$ (amide I), 1530s (amide II), 1236 w (amide III). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 10.03$ (br, IH, NH), 8.59-8.62 (m, 1H, py-H ${ }^{6}$), 8.28-8.32 (m, 1H, py- H^{3}), 7.85-7.92 (m, 1H, py-H ${ }^{4}$), 7.76-7.81 (m, $2 \mathrm{H}, o$-phenyl-H), 7.34-7.49 (m, 3H, py-H ${ }^{5}, \mathrm{~m}$-phenylH). $7.11-7.18$ ($\mathrm{m} .1 \mathrm{H}, \mathrm{p}$-phenyl-H). ${ }^{\mathrm{C}}$ NMR (CDCl_{3}): $\delta 162.00$ (carbonyl-C), 149.98 (py-C2), 147.98 (py 2 C $^{\text {b }}$). 137.84, 137.62 (phenyl- C^{1}, py- C^{4}), 129.07 (phenyl- C^{3}), 126.37 (py-C ${ }^{5}$): 124.30 (py- \mathbf{C}^{1}), 122.41 (phenyl-C ${ }^{4}$). 119.75 (phenyl-C ${ }^{2}$). Anal. Found: C, 72.66; H, 4.96; N, 14.15. $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}$ (198.23). Calc.: C. 72.70; H. 5.10: $\mathrm{N}, 14.14 \%$. MS (EI): $198 \mathrm{~m} / \mathrm{e}\left(\mathrm{M}^{+}\right)$.

4.1.5. N-I(S)-1-Phenylethyll-2-pyridinecarboxamide 1e

1e was prepared by a method described previously [29]. Yield: $3.90 \mathrm{~g}\left(57 \%\right.$), m.p. $53-54^{\circ} \mathrm{C}$ (Ref. [29]:
$55^{\circ} \mathrm{C}$). IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $3374 \mathrm{~m}, 3360 \mathrm{~m}(\mathrm{~N}-\mathrm{H}), 1660 \mathrm{~s}$. 1652 s (amide I), 1513 s (amide II). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: δ $8.51-8.54\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{py}-\mathrm{H}^{6}\right), 8.34(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 8.17-8.21$ (m, 1H, py- ${ }^{3}$), $7.78-7.84\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{py}-\mathrm{H}^{4}\right), ~ 7.22-7.43$ ($\mathrm{m}, 6 \mathrm{H}, \mathrm{py}-\mathrm{H}^{\mathrm{S}}$, phenyl-H), $5.33(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}$), $1.62(\mathrm{~d}$, $\left.J\left(\mathrm{CH}_{3}-\mathrm{CH}\right)=7.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) \cdot{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta$ 163.40 (carbonyl-C), 150.11 (${ }^{\text {(y }}$ - C^{2}), 148.03 ($\mathrm{py}^{2} \mathrm{C}^{6}$), 143.39 (phenyl-C ${ }^{1}$), 137.28 (py-C ${ }^{4}$), 128.67 (phenylC^{3}), 127.30, 126.07 ($\mathrm{py}-\mathrm{C}^{3},-\mathrm{C}^{5}$), 126.23 (phenyl- C^{2}), 122.29 (phenyl-C ${ }^{4}$), $48.86\left(\mathrm{CH}_{\left(\mathrm{CH}_{3}\right)}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$), 22.08 $\left(\mathrm{CH}_{3}\right)$. Anal. Found: C, 74.16; H, 6.29; N, 12.38. $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}$ (226.30). Calc.: C, 74.30; H, 6.25; N , 12.38%. MS (EI): $226 \mathrm{~m} / \mathrm{e}\left(\mathrm{M}^{+\cdot}\right)$.

4.2. Synthesis of the complexes

4.2.I. General procedure for complexes $\mathbf{2 a - e}$

Into a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (10 ml) containing the ligand $(123.3 \mathrm{mg}, 1.01 \mathrm{mmol})$ and $[\mathrm{Rh}(\mathrm{cod}) \mathrm{Cl}]_{2}(249.0 \mathrm{mg}$. 0.50 mmol) was added an equimolar amount of NaOH ($40.4 \mathrm{mg}, 1.01 \mathrm{mmol}$) in 5 ml of ethanol (for complexes 2a-d) or the double amount of $\mathrm{KOH}(113.3 \mathrm{mg}, 2.02$ mmol) in 5 ml of ethanol (for complex 2e). The mixture was stirred for 10 min at room temperature, then the solvent was evaporated. The resulting yellow solid was dissolved in $2-3 \mathrm{ml}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through celite. The solvent was removed and the yellow solid was dissolved in toluene (complexes 2a-d) or THF (complex 2e). Pentane was added to form the upper layer. Refrigeration afforded the compounds as orange microcrystalline powders. Crystals suitable for X-ray diffraction studies of 2 a were obtianed by the slow evaporation of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, solution in the open air.
4.2.2. η^{J}-1.5: Cychoctadienet2-pyridinecarhoxamidatolrhodium(I) $2 a$

Yield: $206 \mathrm{mg}(62 \%)$, m.p. $200^{\circ} \mathrm{C}$ (decomp.). IR ($\mathrm{K} 13 \mathrm{r} . \mathrm{cm}^{-1}$): 3265w ($\mathrm{N}-\mathrm{H}$), 1592s ($\mathrm{C}=\mathrm{O}$). 1373m ($\mathrm{C}-\mathrm{N}$). 'H NMR (CDCl_{3}): $\delta 8.02-8.04\left(\mathrm{nt} .1 \mathrm{H}, \mathrm{py}-\mathrm{II}^{3}\right)$. 7.89-7.94 (m, 1H, py-H ${ }^{4}$), 7.65-7.67 (m, 1H, py-H H^{6}), 7.39-7.42 (m, 1H, py-H ${ }^{5}$), 5.13 (br, 1H, NH), 4.35 (s. $2 \mathrm{H},=\mathrm{CH}(\mathrm{cod})$), $4.01(\mathrm{~s}, 2 \mathrm{H},=\mathrm{CH}(\mathrm{cod})$), 2.47-2.52 (m, 4H, CH $2(\operatorname{cod})$), $1.96-1.99\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}(\operatorname{cod})\right)$. ${ }^{17} \mathrm{C}$ NMR (CDCl_{3}): $\delta: 174.07(\mathrm{C}=0), 156.30\left(\mathrm{py}-\mathrm{C}^{2}\right)$, 145.79 (py-C ${ }^{6}$), $139.42\left(\right.$ py- C 4), $126.25\left(\right.$ py-C $\left.{ }^{5}\right), 124.98$ $\left(\right.$ py-C $\left.{ }^{3}\right), 81.43\left(\mathrm{~d}_{1} J\left({ }^{13} \mathrm{C}^{-\cdots}{ }^{103} \mathrm{Rh}\right)=12.7 \mathrm{~Hz},=\mathrm{CH}\right.$ $(\operatorname{cod})), 78.63\left(\mathrm{~d}, \mathrm{~J}\left({ }^{13} \mathrm{C}-{ }^{103} \mathrm{Rh}\right)=11.9 \mathrm{~Hz}=\mathrm{CH}(\operatorname{cod})\right)$, $30.99\left(\mathrm{CH}_{2}\right.$ (cod)), $30.51\left(\mathrm{CH}_{2}(\mathrm{cod})\right)$. Anal. Found: C, 50.87 ; H. 5.19; N, 8.62. $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{ORh}$ (332.24). Calc.: C, $50.61: \mathrm{H}, 5.17 ; \mathrm{N}, 8.43 \%$. MS (FD, MeOH): 332 $m / c\left(\mathrm{M}^{+}\right)$.

4.2.3. $\quad \eta^{4}$ 1.5-Cyclooctadiene(N-methyl-2-pyridinecarboxumidato)rhodium(1) $2 b$

Yield: 197 mg (57%), m.p. $195^{\circ} \mathrm{C}$ (decomp.). IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 1591s ($\mathrm{C}=0$), $1367 \mathrm{~m}(\mathrm{C}-\mathrm{N})$. H NMR
$\left(\mathrm{CDCl}_{3}\right): \delta 8.02-8.05\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{py}-\mathrm{H}^{3}\right), 7.85-7.91(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{py}-\mathrm{H}^{4}\right), 7.57-7.59\left(\mathrm{~m}, 1 \mathrm{H}\right.$, py- H^{6}). $7.31-7.38(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{py}-\mathrm{H}^{5}\right), 4.39-4.40(\mathrm{~m}, 2 \mathrm{H},=\mathrm{CH}(\operatorname{cod})), 3.97-3.98$ (m, $2 \mathrm{H},=\mathrm{CH}(\mathrm{cod})$), $270\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.46-2.56(\mathrm{~m}$, $4 \mathrm{H}_{3} \mathrm{CH}_{2}(\operatorname{cod})$), 1.92-2.06 (m, 4H, CH_{2} (cod)). Anal. Found: C. $51.70 ; \mathrm{H}, 5.64 ; \mathrm{N}, 8.14 . \mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{ORh}$ (346.27). Calc.: C, 52.03; H, 5.54; N, 8.09\%. MS (FD. $\mathrm{MeOH}): 346 \mathrm{~m} / e\left(\mathrm{M}^{+\cdot}\right)$.

4.2.4. $\quad \eta^{4}$-1,5-Cyclooctadienel N-(2-propyl)-2-pyridinecarboxamidatolrhodium(I) 2c

Yield: $251 \mathrm{mg}(67 \%)$. m.p. $230^{\circ} \mathrm{C}$ (decomp.). IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 1587s $(\mathrm{C}=\mathbf{0})$, $1341 \mathrm{~m}(\mathrm{C}-\mathrm{N}) .{ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): \delta 7.97-8.01\left(\mathrm{~m}, 1 \mathrm{H}\right.$, py- $\left.\mathrm{H}^{3}\right), 7.82-7.89(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{py}-\mathrm{H}^{4}\right), 7.53-7.55\left(\mathrm{~m} .1 \mathrm{H}, \mathrm{py}-\mathrm{H}^{6}\right), 7.29-7.34(\mathrm{~m}$, IH, py-H ${ }^{5}$), 4.2l-4.22 (m, 2H. $=\mathrm{CH}(\operatorname{cod})$), 3.94-3.95 (m. $2 \mathrm{H},=\mathrm{CH}(\mathrm{cod})$), $2.45-2.74\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$, $\left.\mathrm{CH}_{2}(\operatorname{cod})\right), 1.92-2.04\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}(\operatorname{cod})\right), 1.45(\mathrm{~d}$, $\left.J\left(\mathrm{CH}_{3}-\mathrm{CH}\right)=7.5 \mathrm{~Hz} .6 \mathrm{H}, \mathrm{CH}_{3}\right)$. Anal. Found: C . 54.45: H, 6.24; N. 7.60. $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{ORh}$ (374.33). Calc.: C. 54.54: H. 6.21: N. 7.49%. MS (FD, MeOH): 374 $m / e\left(\mathrm{M}^{+}\right)$.
4.2.5. $\quad \eta^{4}-1.5-$ Cyclooctadiene(N-phenyl-2-pyridinecarbotamidato)rhodium(1) $2 d$

Yield: $237 \mathrm{mg}(58 \%), \mathrm{m} . \mathrm{p}, 235^{\circ} \mathrm{C}$ (decomp.). IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 1594 \mathrm{~s}(\mathrm{C}=0)$. $1368 \mathrm{~m}(\mathrm{C}-\mathrm{N}) .{ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): \delta 8.09=8.13\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{py}-\mathrm{H}^{3}\right), 7.87-7.94(\mathrm{~m}$.
 $1 \mathrm{H}, \mathrm{py}=\mathrm{H}^{3}$), $7.01=7.34(\mathrm{~m}, 5 \mathrm{H}$, pheny $\mathrm{l} \cdot \mathrm{H}) .3 .98-4.00$ (m, 2H, $=\mathrm{CH}(\mathrm{cod})), 3,84-3,87(\mathrm{~m}, 2 \mathrm{H},=\mathrm{CH}(\mathrm{cod}))$. $2.33=2.60)\left(\mathrm{m}, 4 \mathrm{H}, \mathrm{CH},(\mathrm{cod}), 1.79=1.98(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Cl})_{2}\right.$ (cod)). "C NMR (CDCl 1): $8171.24\left(\mathrm{~d} . /(1)^{11} \mathrm{C}={ }^{107} \mathrm{Rh}\right)^{2}$ $=0.9 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}$) , 156.97 ($\mathrm{py} \mathrm{C}^{2}$), 147.09 (d, $J^{12} \mathrm{C}^{-}$ ${ }^{103} \mathrm{Rh}=1.1 \mathrm{~Hz}$, phenyl. C1), 145,00 (рy- C°), 139,46 ($p y=C^{d}$), 128.39, 126.70 (phenyl. C^{2}, C^{3}), 126.15.
 $\left.J\left({ }^{13} \mathrm{C}={ }^{109} \mathrm{Rh}\right)=12.7 \mathrm{~Hz} . \quad \mathrm{CH}(\mathrm{cod})\right) .77 .81$ (d . $\left.J\left({ }^{1!} \mathrm{C}={ }^{109} \mathrm{Rh}\right)=12.2 \mathrm{~Hz}=\mathrm{CH}(\operatorname{cod})\right), 30.72\left(\mathrm{CH}_{2}\right.$ (cod)), 30.37 (CH, (cod)). Anal. Found: C. $58.32 ; \mathrm{H}$, 5.31: $\mathrm{N}, 6.68 . \mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{ORh}(408,36)$. Calc.: C, 58,82 : H, 5.19: N. 6.86\% MS (FD, MeOH): $408 \mathrm{~m} / \mathrm{c}\left(\mathrm{M}^{+\circ}\right)$.
4.2.6. $\quad \eta^{2}$-1.5-Cyclooctadiene(N-/(S)-1-phenylerhyl/-2. pyridinecarboxamidato) rhodium(I) $2 e$

Yield: $249 \mathrm{mg}(57 \%)$, m.p. $230^{\circ} \mathrm{C}$ (decomp.). IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 1591 \mathrm{~s}(\mathrm{C}=0), 1382 \mathrm{~m}(\mathrm{C}-\mathrm{N})$. ${ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{1}\right):$ \% 7.92-7.95 (m, 1H, py- $\left.\mathrm{H}^{3}\right), 7.78-7.84(\mathrm{~m}$, 1H. py H^{d}), $7.50-7.57$ (m, 3H, py $\mathrm{H}^{\text {t. }}, 2$ plenyl-H), $7.25-7.33$ (m, 3H, py $\mathrm{H}^{*}, 2$ phenyl-H), $7.11-7.16$ (m. 111. p-phenyl-H), 4.30 (br, 1H, $=\mathrm{CH}$ (cod)): 4.18 (br. $\mathrm{HH},=\mathrm{CH}(c o d)), 3.96=4.02(\mathrm{~m}, 3 \mathrm{H},=\mathrm{CH} 2 \times$). $\mathrm{CH}\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{8} \mathrm{H}_{3}\right)$), 2.51-2.58 (m, 4H, $\left.\mathrm{CH}_{2}(\operatorname{cod})\right)$. $1.95-1.98\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}(\operatorname{cod})\right), 1.79(\mathrm{~d}, J=6.9 \mathrm{~Hz}$. $3 \mathrm{H}, \mathrm{CH},)^{17} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}\right): \delta 171.74(\mathrm{C}=0), 157.50$
(py-C ${ }^{2}$), 145.80 (phenyl- C^{1}), 144.23 (py-C 6), 139.27 (py-C4), 127.72, 126.48 (phenyl-C ${ }^{2}, C^{C^{3}}$), 125.67, $125.45,125.07$ (py-C ${ }^{3},-C^{5}$, phenyl- C^{4}), 84.90, (d, $J\left({ }^{13} \mathrm{C}-{ }^{103} \mathrm{Rh}\right)=12.8 \mathrm{~Hz} . \quad=\mathrm{CH}$ (cod)); 84.35, (d, $\left.J\left({ }^{13} \mathrm{C}-{ }^{103} \mathrm{Rh}\right)=12.8 \mathrm{~Hz},=\mathrm{CH}(\operatorname{cod})\right), 77.84(\mathrm{~d}$, $\left.J\left({ }^{13} \mathrm{C}-{ }^{103} \mathrm{Rh}\right)=12.0 \mathrm{~Hz}, \quad=\mathrm{CH}(\operatorname{cod})\right)$, 53.71 $\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\right), 31.14\left(\mathrm{CH}_{2}(\operatorname{cod})\right), 30.23\left(\mathrm{CH}_{2}\right.$ $(\operatorname{cod})), 18.68\left(\mathrm{CH}_{3}\right)$. Anal. Found: $\mathrm{C}, 60.55 ; \mathrm{H}, 5.60 ; \mathrm{N}$. 6.39. $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{ORh}$ (436.64). Calc.: C, 60.55; H, 5.79; $\mathrm{N}, 6.42 \%$. MS (FD, MeOH): $436 \mathrm{~m} / \mathrm{e}\left(\mathrm{M}^{+\cdot}\right)$.

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie and the BASF AG (Ludwigshafen) for support of this work. This study is part of a project which is funded by the Bundesministerium BMBF.

References

[1] H. Brunner. R. Oeschey and B. Nuber, Part 109, submitted to Organometallics.
[2] A. Togni and L.M. Venamzi, Angerw, Chem. I(\% (1994) 517: Ansew, Chem. Im. Ed. Engl. 33 (1994) 487.
[3] H. Brunher, H. Nishigama and K. foh, in I. Ojima (ed.). Asymmetric Symhesis, VCII, New York, 1903, p. 303.
 Cuthyw, VCHI. Weinheim. 1003.
[5] H. Brumer, U, Obermaman and P. Wimber, d. Orsommets.

[01 M. Nonoyama, Gumg. Chim, Acta, 1.3 (1975) 5 ,
 89.
[8] M. Ray, R. Mukherjer. J.F. Richardson. M.S. Mashuta and R.M. Buchanan. J. Chem. Sere: Datem Drans. (1094) 265 .
[9] E. Manessi-Zoupa, T.F. Zafiropoulos and S.P. Perlepes, \% Nuturfionsch. TEil B: 99 (1994) III.
[10] C.-M. Che, W.-K. Cheng and T.C.W. Mak, J. Chem. Seme. Chem. Comman. (1986) 200.
[II] C.M. Che and W.K. Cheng, J. Chem. Sire. Chom. Comencit. (1986) 1443.
[12] M. Prommesberger. Diphomarbeit, Universith Regensturg. 1096.
[13] T.F. Zafiropoulos, S.P. Perlepes, P.V. Ioannou. J.M. Tsangaris und A.G. Galinos, Z. Nubuffresch. Tal B:, 86 (1981) 87,
$[14]$ G. Masubayashi and Y. Kondo. J. Orgenere at. (hem. 219 (1981) 260 .
[15] S.T. Mak. V.W.W. Yam, C.M. Che and T.C.W. Niak. J. Chem. Sres: Dedtem Trame, (1990) 2555.

[17] B. Brodaki aud G. Pannetar. J. Organanact. Chem. 104 (1976, 241
[18] T. Takano, Y. Sasada and M. Kakudo. Acter Coysallegr., 21 (1906) 514
[19] S.C. Chamg, D.N.Y. Park and N.C. Li. Imorg. Chem., 7 (1908) 2144.
[20] Y. Nawata. H. Iwasaki and Y. Saito, Bull. Chem. Suc. Jpm. 40 (1967) 515.

[^0]: - Corresponding author.
 ${ }^{1}$ For Part 109 see Ref. [1]. Dedicated to Professor Rainer Dieter Fischer on the occasion of his 60th birthday.

[^1]: "Synter-Nicolet R3 difitactometer: Mo Karadiation (A =0.71073
 A): $293 \mathrm{~K}:$ graplite erystal monochromator, structure solution by Patherson-Fourier methods with shasin. phes Release $4.11 / \mathrm{V}$ programs \{sumaxta. pass, A progem for crystal structure determination. Release $4.11 / \mathrm{V}$. Siemens Analytical X-Ray Insiruments, Madison. WI. 1990) on a Micro VAX II computer: position of the H atoms calculated by the option HFIX. "R=I\| $F_{0}\left|-\left|F_{i} \| / \Sigma\right| F_{\mathrm{c}}\right|{ }^{6}{ }^{6} R_{n}$ $=\sum\left\|F_{0}\left|-\left|F_{c} \| w^{1 / 2} / \Sigma\right| F_{0}\right|_{w^{1 / 2}}, \omega=1 / \sigma^{2}\left(F_{0}\right)\right.$.

